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The jetting effect often appears in the Mach reflection of a shock and in more
complicated irregular shock reflections. It also occurs in some natural phenomena,
and industrially important processes. It is studied numerically using a W-modification
of the second-order Godunov scheme, to integrate the system of Euler equations. It is
shown that there is no correspondence between the shock reflection patterns and the
occurrence of jetting. Furthermore, there are two kinds of jetting: strong which occurs
when there is a branch point on the ramp surface where the streamlines divide into an
upstream moving jet and a downstream moving slug; and weak which has no branch
point and may occur at small and large values of the ramp angle θw . The width of
the jet for Mach and other reflections is determined by the angle of the Mach stem
at the triple point (also called the Mach node or three-shock node). Strong jetting
is unstable and the primary instability is in the jet itself. The contact discontinuity
is also unstable, but its instability is secondary with respect to the jet instability.
Two types of irregular reflection are identified in the dual-solution-domain. They are
a two-node system comprising a Mach node followed by a four-shock (overtake)
node; and another which seems to be intermediate between the previous system and
a three-node reflection, which was first hypothesized by Ben-Dor & Glass (1979). An
approximate criterion for the jetting ↔ no-jetting transition is presented. It is derived
by an analysis of the system of Euler equations for a self-similar flow, and has a
simple geometrical interpretation.

1. Introduction
The jetting effect is present in numerous phenomena of scientific and industrial

interest. Jets are formed by the explosion of a shaped charge lined by metal (Birkoff
et al. 1948; Meyers 1994); applications are to armour penetration and cutting of large-
diameter pipes by line charges. Jetting often occurs on the impact of solids, such as
the shallow-angle collision of two explosively driven flat plates (Walsh, Shreffler
& Willing 1953; Rinehart & Pearson 1963), impact of meteorites on the moon,
or the collision of asteroids in space where cooling jets produce glassy minerals,
bronzite, dunite and quartz (Kieffer 1977), or the impact of liquid drops on hard
surfaces (Springer 1976; Dear & Field 1986). The effect has been observed during the
diffraction of shock waves over ramps in gases (Ben-Dor 1978; Glaz et al. 1985, 1986;
Li & Ben-Dor 1999); during the refraction of shocks through gaseous interfaces
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Figure 1. (a) The jetting and (b) no-jetting effects in SMR. i, incident shock wave; r , reflected
shock wave; n, Mach shock (here called the n-shock); CD, contact discontinuity; T, triple
point (Mach node); J, jet.

(Jahn 1956; Abdel-Fattah, Henderson & Lozzi 1976; Abdel-Fattah & Henderson
1978; Henderson, Colella & Puckett 1991); and in the collapse of bubbles during
cavitation (Hammit 1980).

In this study, we present the results of a numerical and theoretical study of the
effect as it appears in the diffraction of a shock over a ramp in a perfect gas.
The governing parameters of the system are: γ , the ratio of specific heats, Mi, the
Mach number of the incident (diffracting) shock wave, and θw , the ramp angle. It is
well known that a single-Mach reflection (SMR) (figure 1) can occur when a shock
diffracts over a ramp with a sufficiently small angle. The SMR system contains three
shocks meeting at a point, called the triple-point or Mach node T (Glimm et al.
1985). Unless otherwise stated, this point will be simply called the node. Part of the
fluid passes sequentially through the incident (i-shock) and the reflected (r-shock)
waves (the i–r sequence), while the remainder passes only through the Mach stem
(n-shock). Since by the triple-shock-entropy theorem (TSE) of Henderson & Menikoff
(1998) the entropy in the fluid behind the i–r sequence is smaller than behind the
n-shock, a contact discontinuity (CD) emanates from the node. By corollary 4 of
the TSE-theorem and Bernoulli’s theorem, the kinetic energy in a frame of reference
attached to the triple point is greater for the i–r sequence. If Mi is sufficiently large,
the part of the flow that passes through the i–r sequence and is bounded by the CD
will turn upstream as it approaches the ramp surface and drive towards the n-shock,
causing the jetting effect (figure 1a). The CD-boundary of the jet is displaced from
the surface. If, however, Mi is sufficiently small, all the flow through the i–r sequence
passes downstream and its CD-boundary becomes tangent to the ramp surface; this
is referred to as the no-jetting effect (figure 1b).

2. Coordinates and notation
2.1. Rest frame

Consider an (x,y)- coordinate system attached to the ramp with origin O at the apex;
the axis x coincides with the surface and y is perpendicular to it (figure 2). Let Di ,
Dr and Dn be the velocities of the i-, r- and n-shocks, respectively, and U i , U r and
Un be the corresponding particle velocities. All the vectors refer to conditions at the
Mach node, T. The vector magnitudes are denoted by normal (non-bold) founts, e.g.
Di , Dr and Dn. The i- and n-shocks travel distances Di and Dn in a unit time as the
node moves from O to T. Similarly, the particles travel the distances Ui or Un in the
same time. The Dr and U r vectors move with the tip of U i . The tips of the U i and
Un vectors touch the extended tangent to the contact discontinuity at T. Along the
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Figure 2. Definition of the velocities in an SMR wave configuration and isopycnics for
γ = 1.4, θw = 30◦ and Mi = 1.6. A, intersection of the tangent to the contact discontinuity at
the node with the ramp surface; C, the point where the contact discontinuity merges into the
ramp surface; S, a stagnation point.

ramp surface, the n-shock velocity vector and the particle velocity vector behind it
are denoted by Dm and Um.

The tangent to the contact discontinuity at T intersects the ramp surface at A; C
is the point where the contact discontinuity merges into the ramp surface, and S is a
stagnation point. Formally, we define the slug length to be the distance in unit time
between the points S and C.

The mass, x-momentum, y-momentum and entropy conservation equations for an
unsteady compressible flow of a perfect gas in (x,y)-coordinates, are, respectively,

ρt + (ρu)x + (ρv)y = 0, (2.1a)

ut + uux + vuy + ρ−1px = 0, (2.1b)

vt + uvx + vvy + ρ−1py = 0, (2.1c)

(pρ−γ )t + u(pρ−γ )x + v(pρ−γ )y = 0. (2.1d)

Here, ρ is the density, p is the pressure, u and v are the x- and y-velocity components,
respectively. The subscripts t , x or y indicate time or space derivatives.

2.2. Self-similarity

Since there is no characteristic length scale in the shock system, the problem has
self-similar solutions which depend only on self-similar coordinates x/t , y/t where
t is the time. The term pseudostationary coordinates is also used. Dimensionless
self-similar coordinates (ξ , η) are defined by:

ξ =
x

Dt
, η =

y

Dt
where D =

Di

cos θw

. (2.2)

In (ξ, η)-coordinates, the distance L = |OE| has unit length, where E is the
intersection of the continuation of the i-shock with the ramp surface (figure 2).
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The set of equations (2.1) for a self-similar flow reads:

(u − ξD)ρξ + (v − ηD)ρη + ρ(uξ + vη) = 0,

(u − ξD)uξ + (v − ηD)uη + ρ−1pξ = 0,

(u − ξD)vξ + (v − ηD)vη + ρ−1pη = 0,

(u − ξD)(pρ−γ )ξ + (v − ηD)(pρ−γ )η = 0.

If q =(U, V ) is the self-similar velocity vector with components

U = u − x

t
= u − ξD, V = v − y

t
= v − Dη, (2.3)

the set of equations can be written as

(ρU )ξ + (ρV )η + 2ρD = 0, (2.4a)

UUξ + V Uη + UD + ρ−1pξ = 0, (2.4b)

UVξ + V Vη + V D + ρ−1pη = 0, (2.4c)

U (pρ−γ )ξ + V (pρ−γ )η = 0. (2.4d)

Notice that the difference between the self-similar and the real velocity depends on
the location. The additional velocity (−ξD, −ηD) is the radial vector field centred
at the origin O. Thus the flow is radial upstream of the i- and the n-shocks and is
centred on O. The flow upstream of the r-shock is also radial, but centred on the
tip of the vector U i . If the r- and the n-shocks are locally straight at the node, then
locally the flow downstream of them is also radial and centred on the tips of the
vectors U r and Un, respectively. The tips of the vectors U i and Un are also centres for
the radial flows near the node. These vectors are associated with the extended tangent
to the contact discontinuity at the node (figure 2). The global convergence point for
the flow downstream of the r- and n-shocks are, respectively, S and C (figure 2). Since
V = 0, and U is continuous along the ramp surface, S is a stagnation point. For more
details see Jones et al. (1951).

Finally, the self-similar Mach number is defined by:

M =

√
U 2 + V 2

a2
where a2 =

γp

ρ
. (2.5)

Hereinafter, unless otherwise stated, self-similar velocity and self-similar Mach number
will be used.

3. The numerical method
We consider a plane incident shock in a perfect gas (γ = const), with Mach number

Mi =Di/a0, diffracting over a ramp of angle θw . The unsteady flow is described
by the conservation equations of mass, momentum and entropy (Euler equations).
These equations were solved numerically using a W-modification of the Godunov
method which has a second-order accuracy both in space and in time (for details see
Vasilev 1996).

3.1. The computational domain and the grid

Curvilinear moving grids were used in the calculations. The initial position of the
computational domain is shown in figure 3. The boundaries CT and TD were used to
track the shock fronts during the calculations. The gas parameters behind the i-shock
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Figure 3. The boundaries of the moving computational domain. CT and TD are used for
tracking the fronts of the r-, and n-shocks. Mi , the incident shock Mach number; θw , the ramp
angle.

were set as the initial conditions for the entire domain. In order to reduce CPU-time,
the results of the previous computation were employed as the initial condition for
the following calculation in the production runs. The following boundary conditions
were imposed:

(i) Zero normal velocity components along the ramp surface.
(ii) The parameters of the unperturbed gas at rest at the boundary TD.
(iii) The parameters of the gas behind the i-shock for all the other boundaries.
Since, as will be explained subsequently, a procedure for tracking the shock fronts

was applied, the computational mesh became curvilinear. An example of the formed
computational meshes for Mi = 5 and θw = 25◦ is shown in figure 4(a). In order
to simplify the computational grid, the r-shock was only partially tracked, and its
segment near O was located inside the computational domain, and thus, was smeared
over 2–3 cells by a shock-capturing scheme. This segment was 10–30% of the length
of the r-shock front.

A denser mesh was used near the node in order to improve the local accuracy
of the computation (figure 4a). Four cells adjacent to the node were replaced by
triangular cells with a common vertex T (see figure 4b). This simple procedure
significantly increased the resolution of the contact discontinuity and the accuracy of
the computations.

3.2. Shock tracking

The algorithm for the displacement of the mesh line and for tracking the shock front,
is now described briefly. The scheme of the displacement of the j th node is shown
in figure 5. For simplicity, it is assumed that the shock propagates to the right into a
quiescent gas. Let the point Sn

j be the common point of the adjacent (j − 1)th and j th
segments of the shock front at time tn. It is required to determine the displacement
of the point Sn

j along the given directrix Lj during the time interval �t to its new

position Sn+1
j .
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Figure 4. (a) An example of the formed computational mesh (only every fifth mesh-line is
plotted) for a typical case. (b) The structure of the computational grid near the node.
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Figure 5. The modified scheme for calculating the motion of the shock node, while
accounting for the propagation of the perturbations behind the shock front.

The displacement velocities Dj−1 and Dj of the segments Sn
j−1S

n
j and Sn

j S
n
j+1 in a

direction normal to them are found by solving the Riemann problems with the initial
parameters of the cells located on the two sides of these segments. The disturbances
propagating from point Sn

j follow the straight segments of the shock front and deform
it into a curvilinear segment S ′

jS
′′
j . The position of the curvilinear segment can be
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determined using an acoustic approximation:

tan2 ψj =
(γ + 1)M4

j(
M2

j − 1
) [

2 + (γ − 1)M2
j

] , (3.1)

where Mj is the Mach number of the j th segment of the shock front. A similar
procedure is employed for the (j − 1)th segment. If the directrix Lj does not intersect

the curvilinear segment S ′
jS

′′
j , then the new position Sn+1

j is determined as the point of
intersection of the directrix Lj with one of the straight segments. In the case of two
intersections, the one that is further away from the Sn

j point is selected. Otherwise,

Sn+1
j is determined by the average between the points of intersection of the directrix

Lj with the two circles that pass through S ′
j and S ′′

j and the tangent to one of the
straight segments (figure 5). This procedure can be easily generalized to the case of a
moving directrix Lj and to inhomogeneous flow ahead of the shock.

In the calculations of the motion of the node in an MR system, the directrix is
the i-shock front, and the curvilinear segment is replaced by continuing the straight
segments of the wave.

The algorithm differs from similar algorithms in that we perform smoothing of the
front using a physical mechanism, namely the propagation of disturbances behind the
shock front. Its high efficiency is demonstrated by the successful calculation of weak
shock reflections under the conditions of the von Neumann paradox (Vasilev 1999).

If the grid line does not coincide with the front of the tracked wave (e.g. at the
initial moment), then the mesh line moves as a weak disturbance when the solution
of the Riemann problem is employed. Eventually, it does coincide with a wavefront
because the upstream perturbation velocity is smaller than the front velocity, whereas
the downstream perturbation velocity is larger than that of the front. Thus, the
algorithm simultaneously solves two problems, namely, shock capturing and shock
tracking.

After each time step the length OE (figure 3) is used to normalize the coordinates
of the mesh points. Thus, once the solution attains a self-similar state, the mesh
and all the flow parameters become constant. The calculations were performed until
the solution attained this state. Both the absolute value of the time derivative of
the density and that of the trajectory angle of the node were used as quantitative
estimates of the degree of unsteadiness (Vasilev 1998). The calculations showed that
the latter estimate was the most robust, since the node trajectory angle was the slowest
to attain the self-similar state. Note that the renormalization of the mesh coordinates
at each time step is performed only for convenience and does not affect the results of
calculations.

In all the cases where the jets were stable (§ 4.7), the self-similar state was attained
with high accuracy. When the jet was unstable, the calculation times were extended
two to three times as compared to those with stable jets.

4. Numerical and analytical results
4.1. The wave systems

Forty-eight calculations were done for all the combinations of the i-shock Mach
numbers: Mi = 1.5, 2, 2.5, 3, 4, 5 and ramp angles: θw = 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦,
40◦. A compendium of the results (constant density contours), in the vicinity of the
node, is shown in figure 6. Hereinafter, unless otherwise stated, the specific heat ratio
is γ = 1.4. The angles of the shocks in the vicinity of the node could be determined



266 L. F. Henderson, E. I. Vasilev, G. Ben-Dor and T. Elperin

SMR

40

SMR

35

SMR

30

SMR

SMR

SMR

25

20

15

10

5

SMR

SMR

SMR

SMR

SMR SMR

SMR

SMR

SMR

1.5 2.0 2.5 3.0 4.0 5.0

Mihw
(deg.)

Figure 6. Wave systems for γ = 1.4. The ramp angle, θw , varies from 5◦ to 40◦, the i-shock
Mach number, Mi , varies from 1.5 to 5. The single-Mach reflection systems are labelled SMR.

with high accuracy by employing the front tracking technique. This enabled us the use
of the three-shock theory to classify the various types of wave configuration. Distinct
single-Mach reflection (SMR) configurations are indicated in figure 6.

The two-node reflection (also called a double-irregular reflection (DIR), § 4.3)
domain extends to the upper right of the SMR-domain. There is a transitional
domain between the SMR and DIR domains. In a transitional-irregular reflection
(TIR), the second node spreads out into a convex bend along the r-shock; see
for example the system for Mi = 3, θw = 30◦. Following Olim & Dewey (1992) the



The wall-jetting effect in Mach reflection 267

�

h

�

m-line

m

�

q

Figure 7. The curvilinear coordinates (τ , ν).

weak-Mach reflection (WMR) and von Neumann reflection (vNR) domains extend
to the lower left of the SMR-domain.

Jetting clearly exists for all the TIR and DIR configurations. Moreover, the
calculations qualitatively agree with experiments in that the jet curves upstream
along the ramp surface, rolls up behind the n-shock, and drives this shock further
forward as the value of Mi increases. Jetting is also found in the SMR, WMR and
vNR systems with Mi � 2, although it is not so pronounced. The results show no-
jetting for all the cases with Mi = 1.5. Thus, it may be concluded that there is no
direct correlation between the appearance of the jet and a particular type of shock
system.

4.2. Analytical model for jetting ↔ no-jetting transition

We apply (2.4) to the flow region under the contact discontinuity. It is assumed that
the flow has a locally radial velocity field behind the n-shock. We use the hodograph
variables (q , θ) where:

q =
√

U 2 + V 2, U = −q cos θ, V = −q sin θ. (4.1)

We also use orthogonal curvilinear coordinates (τ , ν) attached to the streamlines,
such that the ν-lines (i.e. the curves for which τ = const) are orthogonal to the τ -lines
(figure 7).

Equation (2.4a) becomes

ρ
∂q

∂τ
+ q

∂ρ

∂τ
− ρq

∂θ

∂ν
+ 2ρD = 0, (4.2)

whereas (2.4b) and (2.4c) yield an equation with derivatives along the streamline:

ρq
∂q

∂τ
+ a2 ∂ρ

∂τ
+ ρqD = 0, (4.3)

where a is the speed of sound. The ∂θ/∂ν derivative measures the curvature of the
ν-line and the narrowing of a stream tube, about the streamline. Eliminating the
density from (4.2) and (4.3) we obtain,

q
∂θ

∂ν
= (1 − M2)

∂q

∂τ
+ (2 − M2)D, (4.4)

where M = q/a is the Mach number.
Consider the no-jetting case for which the contact discontinuity ends at C on the

wall (figure 8). The velocity field is radial upstream of the n-shock (see § 2.2), but it is



268 L. F. Henderson, E. I. Vasilev, G. Ben-Dor and T. Elperin

h

��c K

C
s

r h l

P

Figure 8. Geometry for a radial velocity field below the contact discontinuity.

radial downstream of it only for straight shocks. Nevertheless, it will be assumed that
all the flow field under the contact discontinuity is locally radial, so θ(τ, ν) depends
linearly on ν. Consequently, for a fixed τ we have

∂θ

∂ν
= const =

1

r
,

i.e. the ν-contours are arcs with radius r . Figure 8 shows an arc of length l, passing
through an arbitrary point P on the contact discontinuity. The radius of the arc is
equal to the segment PK, which is tangent to the contact discontinuity at P. Since r

may change along the streamline it can depend on ξ .
The curvilinear length of the contact discontinuity measured from C is denoted by

s. Applying (4.4) to the streamline along the lower side of the contact discontinuity
yields

q

r(s)
= (2 − M2)D − (1 − M2)

dq

ds
. (4.5)

Let h(s) be the distance from P to the ramp surface along the normal to the ramp,
then (4.5) can be written as:

q

h

dh

ds
= (2 − M2)D − (1 − M2)

dq

ds
. (4.6)

Applying (4.6) to a small neighbourhood around C, where M ≈ 0, we obtain a
simple differential equation, linking the shape of the contact discontinuity h(s) with
the velocity q(s):

1

h

dh

ds
+

1

q

dq

ds
=

2D

q
. (4.7)

Let us assume that the particle velocity along the contact discontinuity and under
it, approaches zero near C according to a power law q(s) = ksβ . The general solution
h(s) to (4.7) is:

q = ksβ ⇒




h(s) =
1

ksβ
exp

(
2D

k(1 − β)
s1−β

)
if β �= 1,

h(s) =
1

k
s2(D/k)−1 if β = 1,

(4.8)

Three cases of (4.8) must be considered:
Case 1: β < 1. This case has no physical meaning, because the initial condition,

h(0) = 0, is not satisfied.



The wall-jetting effect in Mach reflection 269

Case 2: β > 1. The contact discontinuity merges smoothly into the ramp surface,
and all the derivatives of h(s) vanish at C. The theory yields no conditions for the
onset of jetting in this case.

Case 3: β = 1. The power relation for h(s) has the exponent

λ = 2
D

k
− 1.

If λ< 2, the contact discontinuity curvature becomes infinite at C. This singularity
should produce an increase in the pressure along the streamline at the upper side
of the contact discontinuity, thereby causing the onset of the jetting effect. Thus, the
effect appears only if,

λ=
2D

k
− 1 < 2 where k =

dq

ds

∣∣∣∣
C

. (4.9)

The criterion (4.9) has a simple geometrical interpretation. The calculations show
that when jetting occurs, the q(s) dependence is nearly linear between C and the
node, i.e. q = ks. This allows us to associate the criterion (4.9) with the characteristics
of the node. We apply (4.5) to a neighbourhood of the node

q3

1

rm

=
(
2 − M2

3

)
D − k

(
1 − M2

3

)
,

where rm is the tangent segment to the contact discontinuity at the node before it
intersects the ramp surface; q3 and M3 are the velocity and the Mach number behind
the n-shock at the node. Since q3 = ksm, where sm is the full length of the contact
discontinuity from the node to C, we obtain

sm

rm

= λ − 1
2
(λ − 1)M2

3 where λ= 2
D

k
− 1.

Thus, the criterion (4.9) has the following interpretation,

λ< 2 ⇔ sm

rm

< 2 − 1
2
M2

3 , (4.10)

that is, when jetting appears, the ratio of the length of the contact discontinuity to
the length of the tangent segment does not exceed 2 − 0.5M2

3 . Jetting occurs only if
the condition given by (4.10) is satisfied. However, this condition is not sufficient, if
for example β > 1 in (4.8), then jetting may not occur. Noting that the Mach number
M3 cannot exceed 1, it is possible to obtain a simple approximate criterion for jetting,

sm < 3
2
rm. (4.11)

Using (4.6) and the linear dependence q = ks, a relation for the shape of the contact
discontinuity can be obtained by assuming that the sound speed variations are small
enough to be neglected:

q = ks, M =
ks

a
, a = const = a3.

Then,

1

h

dh

ds
=

λ

s
− sµ,
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Mi = 1.6 Mi = 1.7 Mi = 1.8

sm/rm 1.81 1.56 1.29
2−0.5 M2

3 1.78 1.80 1.82
Criterion (4.10) No-jetting Jetting Jetting
Computation No-jetting No-jetting Jetting

Table 1. Numerical validation of the jetting ↔ no-jetting criterion given by (4.10), for γ = 1.4,
θw = 30◦ and three different i-shock Mach numbers.

(a)

(b)

No-jetting Jetting

Figure 9. (a) Flow Mach number contours (�M = 0.02) for θw = 30◦, Mi = 1.6 (left) and
Mi = 1.8 (right), sm/rm = 1.81 (left) and 1.29 (right). (b) Density contours (�ρ/ρ0 = 0.02)
for fragments of the flow field near the point where the contact discontinuity merges with the
ramp surface, zoom in factor four.

where

λ=
2D

k
− 1, µ=

k(D − k)

a2
3

= 1
2
(λ − 1)

M2
3

s2
m
.

The solution for h(s) is

h(s) = C · sλ exp
(
−µ

(
1
2
s2

))
.

The constant C is found from the condition h(sm) = hm.
The criterion (4.10) was validated numerically for three cases γ =1.4, θw = 30◦ and

Mi =1.6, 1.7 and 1.8. Adaptive mesh refinement was used with a grid of 1500 × 500.
The results are presented in table 1. It can be seen that the prediction of the criterion
is incorrect only for Mi = 1.7. The latter, supports the remark that the criterion is
necessary, but not sufficient, for the prediction of the onset of the effect.

Figure 9 shows Mach number and density contours for the flow fields of the
extreme cases, Mi = 1.6 and Mi = 1.8, presented in table 1. The wave configuration
and the discretization of the Mach number contours show that the flow under the
contact discontinuity is locally nearly radial. Since the jet is very small, the absence
of jetting in the computations, for the intermediate case, Mi = 1.7, can be explained
by insufficient resolution of the numerical simulation.
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Figure 10. Enlargement of 9 of the 48 cases shown in figure 6 illustrating the jetting for
different combinations of Mi and θw . SMR, single-Mach-reflection; TIR, transitional-
irregular-reflection; DIR, double-irregular-reflection; vNR, von Neumann-reflection.

4.3. The jetting configurations

Nine scaled-up systems for all the combinations with Mi = 2, 3 and 4 and θw =10◦, 20◦

and 30◦ are shown in figure 10. The systems comprise different irregular reflections,
namely, vNR, SMR, TIR and DIR. All the calculations reveal a curving of the
slipstream towards the Mach stem near the ramp surface, and the formation of a
jet that drives towards the foot of the n-shock. However, the size of the jets and
the flow patterns associated with them vary considerably. When the angle between
the contact discontinuity and the ramp surface is large, the jet is rather short, i.e.
its length and width are of the same order (figure 10f, i). When the angle decreases,
the length of the jet increases and becomes much larger than its width (figure 10a,
d , g). Kelvin–Helmholtz instabilities develop along the jet, and along the adjacent
part of the contact discontinuity (figure 10d , g). As will be shown subsequently, non-
periodic vortical perturbations in the jet were detected in the calculations when mesh
refinement was applied.

In the case of no-jetting SMR, the n-shock is either concave or nearly plane
(figure 6). However, when jetting does occur, part of the n-shock is driven forward
and becomes locally convex forward. More precisely, an inflection point develops on
it, causing it to be convex below the inflection, and concave above it. Four examples
are shown in figure 11 for constant values of γ and Mi and different values of θw ,
and another four in figure 12 for a fixed values of θw and different values of γ

and Mi . There are DIR configurations in figures 11(a), 12(a) and 12(b), and TIR in
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Figure 11. Density contours for Mi = 4. (a) �ρ/ρ0 = 0.248, θw = 35◦; (b) 0.162, 25; (c) 0.08,
15◦; (d) 0.026, 5◦. The arrowed lines are parallel to the velocity vectors of the n-shocks at their
respective nodes.

figures 11(b), 11(c) and 12(c). The convex/concave shape is clearly visible in the DIR,
but is less pronounced in the TIR. The Dn and Un vectors are above the ramp surface
for all these flows. By contrast, the vectors are below the surface in figures 11(d)
and 12(d), and the n-shocks are virtually plane for these cases. In the special case
when Dn and Un coincide with the surface (Dn = Dm and Un = Um), the n-shock is
everywhere plane and normal to it. For self-similar coordinates, the flow approaches
the n-shock radially, so even when this shock is everywhere normal to the surface, it
is nevertheless an oblique shock everywhere except at the surface where it is locally a
normal shock.

When the Dn and Un vectors are above the surface, the angular width of the jet
is confined between them and the surface. Consequently, the angle between the Dn
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(a)

(b)

(c)

(d)

Figure 12. Density contours for θw = 30◦. (a) Mi = 7, γ = 1.3, �ρ/ρ0 = 0.45, (b) 4, 1.4, 0.2;
(c) 2.5, 1.4, 0.075; (d) 2, 1.4, 2.

and Un vectors and the surface is an approximate measure of the angular width of
the jet. Thus, the width of a jet is determined by the angle of the n-shock at the
node. Furthermore, the tip of Un is close to the point where the jet turns towards
the node. In figures 11(d) and 12(d), which are SMR systems, the jet is small, and the
dependence disappears.

The DIR for Mi = 7 in figure 12(a) is, in fact, a ‘negative’ DIR, i.e. the second node
trajectory angle is smaller than that of the first one (for details see Ben-Dor 1991). As
will be shown subsequently, in this particular case and for cases with smaller values
of Mi , the jet is unstable. Well-defined vortex structures are formed along the contact
discontinuity, and move towards the boundary of the jet. The characteristic size of
these structures is less than the width of the jet, consequently it is the jet boundary
which is mainly subject to the perturbations. The vortex at the end of the jet is large,
and causes strong deformation of the foot of the n-shock. Local shocks appear inside



274 L. F. Henderson, E. I. Vasilev, G. Ben-Dor and T. Elperin

(a)

(b)

(c)

(d)
S C S C

Figure 13. Streamlines of the self-similar velocity field. C, a normal impact/stagnation point;
S, a stagnation point. A slug whose length is CS exists in cases (a) and (c). There is no slug
in cases (b) and (d). All the streamlines passing through the i–r sequence enter the jet. (a)
Mi = 5, γ = 1.4, θw =25◦; (b) 5, 1.4, 15◦; (c) 4, 1.67, 20◦; (d) 4, 1.67, 10◦.

the vortex near the ramp surface and at its periphery. Their positions are unstable
because of the jet pulsation.

4.4. The stagnation points

Streamlines of the self-similar velocity field are shown for four cases in figure 13
for γ = 1.4 and 1.67. Consider the streamlines passing through the i–r sequence. In
figure 13(a), there is a particular streamline that makes a normal impact on the ramp
surface at C, this is a stagnation point. The streamlines between that one, and the
one passing through the node comprise the jet. Since the streamlines split at C, it is
also a branch point. The rest of the streamlines pass downstream and terminate at
the other stagnation point S.

Those streamlines, which approach S from the right, comprise the slug whose length
is CS. Other streamlines approach S from the left and also terminate there. They
comprise the flow that drives the TIR configuration to the right. The streamlines
passing through the n-shock simply spiral around the vortices formed by the jet. A
Kelvin–Helmholtz instability is visible at the jet boundary in figure 13(a). Note that
in this case the flow in the jet is not steady and the instantaneous streamlines of the
velocity vector field may differ from the streamlines of the particles. Neither of the
stagnation points C or S are present in figures 13(b). It appears as if they have merged
together and proceeded to the front of the jet. All the streamlines that pass through
the i–r sequence, and the n-shock comprise the jet. They all terminate at t = ∞ at
the centre of the vortex. As shown in figures 13(c) and 13(d), similar behaviour is
also observed for γ =1.67, but here the branch point C appears for a smaller value
of θw . The existence of C is not associated with any particular type of reflection.
However, as will be shown subsequently, C indicates that the jetting is strong and the
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(a)                                                                  (b)

Figure 14. Streamlines in strong and weak jetting for Mi = 5: (a) strong jetting for θw = 40◦;
(b) weak jetting for θw = 55◦.15

jet unstable. The local increase of the pressure at such a point results in an increase
of the length of the jet.

4.5. Strong and weak jetting

If the ramp angle is increased to about 40◦ the flow remains similar to that shown for
θw = 25◦ in figure 13(a). Streamlines calculated for Mi = 5, θw = 40◦ and γ = 1.4 are
presented in figure 14(a). The upper part of the figure shows streamlines that have
pass through the i–r sequence, but only a small fraction of them are part of the jet.
The streamlines that pass through the n-shock are in the lower part of the figure.
Unexpectedly, they also turn upstream to join the jet. This is possible because the
n-shock is curved, and the entropy is generally less than that of a normal shock on
the ramp surface. The flow behind the weaker part of the n-shock has more kinetic
energy and momentum. However, even in the latter case it has less kinetic energy and
momentum than the flow through the i–r sequence. When the jet comprises part of
the flow passing through the i–r sequence and that passing through the n-shock, the
jetting is defined to be strong jetting. The strong jetting shown in figure 14(a) drives
the foot of the n-shock forward.

As can be seen in figure 14(b), the flow pattern changes from jetting to no-jetting if
the ramp angle is increased to θw = 55◦. All the streamlines through the i–r sequence
now pass into the slug flow. Remarkably, a jet still exists in the n-shock flow with a
vortex at its front. This jet is formed from the streamlines close to the node where the
entropy is less than that at the foot of the n-shock. This jet has less kinetic energy
than the jet in the strong case, so we define it as weak jetting.

4.6. Near detachment (θw → θe) wave systems

Any irregular reflection (IR) will eventually change to a regular reflection (RR) if the
ramp angle is increased sufficiently. Shock tube experiments show that the RR ↔ IR
transition occurs at the detachment criterion θw = θe. Similarly, transition from strong
to weak jetting is also accompanied by changes in the wave configuration. Results of
calculations for the four combinations of Mi = 5, γ = 1.4 and θw = 45◦, 50◦, 55◦ and
58◦ are shown in figure 15 (the subsonic flow regions are shaded for 50◦, 55◦ and 58◦).
Large perturbations are seen in the contours associated with the contact discontinuity
and the jet for θw = 45◦ (figure 15a). The perturbations are negligible for θw � 50◦.
For θw = 58◦, the jet is so thin that it nearly vanishes. The systems for θw = 50◦,
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Figure 15. Density contours for some large ramp angles with γ = 1.4, Mi = 5. For (a) θw =
45◦; (b) 50◦; (c) 55◦; (d) 58◦. The subsonic regions are shaded in frames (b), (c) and (d). T
is a Mach node for all for cases; T1 is a degenerate overtaking node in (a), (b), but it is a
(non-degenerate) overtaking node in (c), (d) see also the refinement in figure 16.

55◦ and 58◦ are in the dual-solution domain, where both regular (RR) and irregular
(SMR, TIR or DIR) reflections are theoretically possible. Experiments in diatomic
gases with Mi ≈ 5 show RR in this domain, whereas the numerical simulations yield
irregular reflections (figure 15b–d). A boundary layer which is always present in ramp
experiments is not accounted for in the present Euler calculations. Calculations using
the Navier–Stokes equations, which simulated a laminar heat-conducting boundary
layer (Henderson et al. 1997, 2001) showed that both regular and irregular reflections
can occur in the dual-solution domain. The simulations also showed that the boundary
layer made it possible for the regular reflection to persist into the IR-domain. However,
this persisted-regular-reflection (PRR) was dynamically unstable, and after a time it
changed suddenly into an irregular reflection, and then rapidly evolved into a self-
similar system. Near θw → θe, the persistence of RR increases to the extent that it
exceeds the observation times available for the experiments, as has happened in many
experimental investigations. However, by using large enough shock-tube test sections
(i.e. long enough ramp surfaces) Dewey & van Netten (1991, 1995) succeeded in
detecting the earlier regular wave configuration becoming irregular, and Henderson
et al. (2001) were able to photograph the evolution of these wave patterns during
experiments. By contrast, there is no boundary layer and thus no PRR for the Euler
calculations, so the irregular system appears immediately.
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T

T1

T2

Figure 16. Self-similar Mach number contours for the case shown in figure 15(d) as
calculated using a mesh refinement with a weak shocks emanating from T1.

The way that information flows into and out of the nodes T and T1 can be used
to classify wave systems in figure 15 following Glimm et al. (1985). If the particle
velocity vector is resolved into vectors parallel and perpendicular to a wave or a
contact discontinuity (CD) then the information flows in the same direction as the
parallel vector. In figure 15, T is a Mach node everywhere because the i-shock
arrives at T, while the CD, the r- and n-shocks all leave it (see also figure 6a in
Henderson & Menikof 1998). In figure 15(b), the r and n1-waves arrive at T1 while
the r1-shock and the CD leave it. Furthermore, the r- and n1-shocks are in the same
family, which implies that T1 is an overtaking node (Glimm et al. 1985; see also
figure 6c in Henderson & Menikoff 1998). Notice that the flow downstream of the
n1-shock is subsonic. By contrast, the flow downstream of the n1-shock is supersonic
in figure 15(c), and a fourth wave n2 can propagate from T1. By definition the T1

node in figure 15(c) is an overtaking node (see figure 6d in Henderson & Menikoff
1998), but because the n2-wave is missing in figures 15(a) and 15(b), T1 is a degenerate
overtaking node in these cases (see figure 6c in Henderson & Menikoff 1998).

The flow behind the r- and n-shocks impacts on the ramp, as evidenced by the
direction of the CD from T. These flows must curve to satisfy the boundary conditions.
The subsonic path behind the n-shock enables these conditions to be communicated
to the flow. The curvature of the contact discontinuity near the surface generates
the fan that converges to the n1-shock in figures 15(b) to 15(d). The impact also
generates a shock which is like a bow shock detaching from a blunt body (the ramp
is the blunt body). As it detaches, the bow shock interacts with the r-shock and
the contact discontinuity from T to produce T1, and its associated waves r1, n1 and
the second contact discontinuity (figure 15a–c). The r1–n1 shock combination can be
thought of as the bow shock after it has interacted with the r-shock and the second
contact discontinuity. There is a subsonic path behind the bow shock between T1

and the ramp. By contrast, the flow is everywhere supersonic behind the T1 node in
figure 15(d), so it is generated entirely by disturbances arising upstream of it. A more
refined calculation, resolves a very weak outgoing wave, n2, emanating from T1; so T1

is an overtaking node (figure 16). The contours are for self-similar Mach number with
a small increment of 0.01. The n2-wave reflects off the ramp and refracts through the
second contact discontinuity producing a weak bend at T2. The flow passes through
a sonic surface behind the refracted wave, and behind the final reflection from the
ramp (figures 15 and 16). The sonic surfaces are like corner signals, and are similar
to the corner signals found in the Navier–Stokes calculations of Henderson et al.
(1997).

In summary, for all the two-node DIR systems in figure 15, there is a Mach node
at T and an overtaking node at T1, but the T1 node is degenerate in figures 15(a) and
15(b), because the n2-shock is absent. The wave systems in figures 15(a) and 15(b)
were previously called double-Mach reflections (DMR), but the name is now seen to
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Figure 17. Isopycnics near the second node T1, for the case shown in figure 15(b) calculated
on different grids. (a) 400 × 50 grid; (b), (c) and (d) mesh refinement by a factor of 2 between
the successive grids. The density contour increment is �ρ/ρ0 = 0.3.

be misleading because each system has only one Mach node. Furthermore, because
of the bend at T2, the system in figure 15(d) was called a transitional-double-Mach-
reflection (TDMR), but as it also has only one Mach node it has been renamed here
a transitional-double irregular-reflection (TIR).

The T1 overtake node in figure 15(b) is now examined in more detail. Using its
calculated coordinates, the self-similar Mach number ahead of it is M = 2.2, and the
angle of incidence of the on-coming flow 47◦. Applying the familiar three-shock (von
Neumann) theory for a Mach node to this data gives the angle 56.4◦ < 90◦ between
the n1-shock and the contact discontinuity from T1. This, of course, differs from the
overtake node result in figure 15(b) where the angle is greater than 90◦. However, it
is possible to obtain a Mach node at T1 for the system in figure 15(b), by refining
the calculations for the flow near the node. In figure 17, there are four meshes with a
refinement factor of 2 between the successive grids; figure 17(a) corresponds to the grid
used in figure 15(b) whereas figure 17(d) corresponds to a Mach node. The refinements
clearly show curvature of the fronts near T1. However, the refined angle is 75◦ < 90◦ in
figure 17(d); it is still significantly greater than the result from the three-shock theory
(56.4◦). A possible explanation is a lack of resolution even on the finest grid, which
would imply that the domain where the fronts are strongly curved is very small. More
accurate results or a better agreement could be obtained by using adaptive front
tracking of all the wavefronts at the node T1 (for details see Vasilev 1999).

The angle (β1) between the CD and the n1 shock is greater than 90◦ in figure 15(b),
but less than 90◦ in figure 17(a). So the transition condition between the two nodes
is where n1 is a normal shock, β1 = 90◦. We note that Colella & Henderson (1990)
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(a)                                                                                          (b)

(c)                                                                                          (d)

Figure 18. Calculations of an unstable jet on different grids, with Mi = 4.5 and θw = 36◦. (a) a
400×100 grid; (b) a 600×150 grid; (c) an 800×200 grid; (d) jetting under a forced numerical
stabilization in an self-similar flow for a 600 × 150 grid. The density contour increments are
�ρ/ρ0 = 0.3.

found that the condition corresponds to a singularity of the form

∂δ2

∂p2

∼ (p2 − pn)
−1/2 , (4.12)

where δ2 is the streamline deflection angle across the n1 shock, pn is the downstream
pressure when n1 is a normal shock and p2 is the downstream pressure when it is
not normal. Thus, the calculations for the streamline deflection angle and for β1,
become sensitive (they are not robust) to small variations in the system parameters as
β1 → 90◦, while the pressure calculations remain robust. The sucessive refinements in
figure 17 straddle this singularity. As seen in figure 2(d) of the Colella & Henderson
(1990), the von Neumann theory displays increasing discrepancies with experiment
as β1 → 90◦. They obtained numerical evidence that the assumption made by von
Neumann that there were three shocks of zero thickness meeting at the node, became
increasingly in error as β1 → 90◦. As β1 is rather large for our results it may be an
alternative explanation as to why they differ from the results of the von Neumann
theory.

Finally, if θW is decreased continuously from 55◦ (figure 15c) to 50◦ (figure 15b),
it is plausible that the supersonic flow downstream of n1 will decrease continuously
through sonic to subsonic; thus causing the n2-shock to vanish and the system to
evolve into that in figure 15(b). It is also plausible that the evolution is reversible.
By contrast, it seems implausible that during evolution, the system would jump
discontinuously to the Mach node configuration at T1.

4.7. Wall-jet instability

A detailed study of the flow instability inside the wall-jet was performed for Mi =
4.5 and ramp angle θw = 36◦. Figures 18(a) to 18(c) show the unsteady system of
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Figure 19. Fluctuations of the Mach number at the foot of the n-shock for the unstable flow
shown in figure 18 as computed on different grids. (a) 400 × 100 grid; (b) 600 × 150 grid;
(c) 800 × 200 grid.

vortices obtained with different grids. The vortices that are formed along the contact
discontinuity, grow with time, and propagate into the jet. Note that shedding frequency
of the vortices is higher for the finer grid, but the average size of the vortices and
the number of them inside the jet do not depend upon the mesh size. This can be
explained by the vortex interaction mechanism; namely, before entering the jet, the
smaller vortices merge into the larger ones whose sizes are determined by the jet
width.

In order to find a reason for the jet instability, it is necessary to determine the self-
similar flow numerically. Regularizing algorithms were employed, as is done when
solving ill-posed problems. A simple numerical forced stabilization procedure was
applied to obtain a stationary solution. Time relaxation was applied at some cells of
the moving computational grid.

The increments of flow parameters at time step ∆t were multiplied by a small
factor of the order of 0.01, at all the mesh cells having numbers equal to multiples
of 5 (i.e. 5, 10, 15, . . . ). Clearly, this procedure does not affect the solution when the
flow is stationary. After turning on the forced numerical stabilization procedure for
an unstable flow, such as that shown in figure 18(b), the vortex structures dissipated
usually after quite a long time, thereafter the flow stabilized and the self-similar
regime shown in figure 18(d) was attained. Note that the vortices inside the unstable
jet are about twice as large as its width in self-similar flow.

The time dependence of the Mach number, Mm, at the foot of the n-shock for the
unstable jetting in figure 18, is shown in figure 19 for three different grids. Each time
unit τ corresponds to doubling the size of the flow structure (logarithmic scale). The
stationary value of the Mach number at the foot of the n-shock for a stabilized flow,
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Figure 20. Evolution of the flow instability after the removal of the numerical forcing
stabilizer.

is Mm = 6.23. The fluctuations in time are not periodic because they are caused by
interactions between different flow structures (jet, front-vortex, contact discontinuity
and shocks), which impose different eigenfrequencies. Although the frequency of the
oscillations increases as the number of cells increases, the frequency of the largest
oscillations and their amplitudes, depend only weakly on the mesh size. In this case,
the amplitude of the variations of the flow parameters at the n-shock is not large
(only about 8–10% in pressure). This supports the conclusion that the large vortices
with sizes of the order of the jet width have the largest effect on the oscillations.

In order to study the instability mechanisms, the stabilized flow shown in fig-
ure 18(d), was chosen for the initial condition, and the numerical stabilization was
turned off. After some time, the flow lost its stability. A time evolution of the
self-similar flow losing its stability is shown in figure 20; there are 18 frames of
density contours, separated by a constant time increment. Frame 1, is identical to the
stable self-similar flow in figure 18d, and frame 18 is similar to the unstable flow in
figure 18(b). An inspection of the frames in figure 20 reveals the following:

Frames 1–3. First appearance of instability at the right end of the jet.
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Figure 21. Pressure (i) and self-similar Mach number (ii) distributions along the wall in the
jet region for self-similar flows. (a) Mi = 4.5, θw = 36◦ and γ = 1.4; (b) Mi =7, θw = 30◦ and
γ = 1.3.

Frames 4–6. The perturbations penetrate the front-vortex and remain there during
one period of rotation. The jet and the vortex perturbations grow rapidly, while the
left parts of the jet and the contact discontinuity remain stable.

Frames 7–8. The perturbations from the jet-vortex system reach the contact
discontinuity and the node.

Frames 9–10. Growing wave perturbations appear at the contact discontinuity, they
flow downstream, and curl up into vortices.

Frames 11–12. The vortices grow with time, move into the jet, and destabilize it.

Frames 13–18. The vortices on the contact discontinuity penetrate the jet, interact
with the ramp surface, and cause additional shocks. These shocks propagate upstream
and interact with the n1-shock. At the same time, the vortices flow through the jet to
the front vortex and cause fluctuations there.

The later irregular evolution of the perturbations may be classified as large-scale
turbulence.

This study of the evolving perturbations shows that the instability of the contact
discontinuity is caused by perturbations from the vortices inside the jet, and also by
pressure oscillations in the front-vortex which occur when the vortices propagating
through the jet, reach it. Thus, the instability of the contact discontinuity is an induced
effect with respect to the jet instability. Note, that moving the computational domain
with a fixed number of cells does not allow resolution of vortices if their size grows
more slowly than that of the cells.

Analysing the parameter distributions inside a stabilized jet can assist in under-
standing the jet instability. The pressure distributions (curves 1) and the self-similar
Mach number (curves 2) along the jet are shown for two cases in figures 21(a)
and 21(b). The jet is located between the two points at which the self-similar Mach
numbers are zero. Note that the pressure reaches local maximum values at these
points. The left-hand point is a stagnation point and the right-hand point is on the
boundary of the large vortex. The self-similar Mach number increases rapidly inside
the jet, and attains values close to unity or even larger. The maximum value of it at
the entrance of the jet is larger than 0.95 in figure 21(a). It gradually decreases further
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Figure 22. Cascade interaction along the contact discontinuity. Adaptive mesh refinement for
figure 18(d). (a) Isopycnics of the forced stable flow. (b) Supersonic Mach number contours
near the interaction of the n1-shock and the contact discontinuity.

along the jet, until it begins to increase again near the large vortex. Immediately
under this vortex, the flow becomes supersonic, and a shock forms. This is evident
by the sudden pressure jump. In figure 21(b), the self-similar Mach number at the jet
entrance exceeds unity, and local supersonic zones, terminated by weak end waves, are
formed. These waves are seen in the pressure distribution immediately downstream
of point K. The two cases, shown in figures 21(a) and 21(b), reveal that the flow
in the jet is transonic, i.e. the self-similar Mach number is close to unity. Such jets
are known to be unstable because the disturbances propagating upstream have low
relative velocities with respect to the jet. As a result, they overtake each other inside
the jet and increase their amplitudes. Experimental observations of the instability can
be found in Ishii et al. (1999). It is important to note that the results indicated that
the jet instability effects near the ramp surface appeared when the self-similar Mach
number at the jet entrance was nearly sonic.

Whether the fluctuations will occur in actual flows is an open question; variations
in the specific heats, the thermal conductivity, and the viscosity, could modify the
flow and damp the evolution of the perturbations, or even prevent their occurrence.
Although jets are observed in experiments (see e.g. Ben-Dor 1978; Shirouzu & Glass
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1982; Glaz et al. 1986), it can be expected that because of heat and viscous dissipations,
the behaviours of the jet and the front-vortex will be different from those obtained in
the inviscid calculations. It is probable that these effects will affect the jet instability.

4.8. Cascade interaction

Consider now the numerical stabilization of the solution in more detail. The density
contours for a stabilized self-similar flow obtained by using a very refined mesh
(1200 × 400 with local mesh refinement), are shown in figure 22(a). The interaction of
the n1-shock with the contact discontinuity at point Q is of special interest. The flow
field is stationary in a self-similar frame, and the gas flows from the node towards
the n1-shock with supersonic velocity. The n1-shock is formed by compression waves
that propagate from the ramp surface towards the first node. Consequently, the flow
behind this shock must be subsonic. Nevertheless, a rarefaction fan, which cannot
exist in a subsonic flow, is seen to emanate from Q in figure 22(a). The resolution
of this paradox follows from the fact that the flow behind the n1-shock is subsonic
everywhere except at Q, where it is sonic M = 1. An enlargement of the flow field, in
the vicinity of Q, is shown in figure 22(b). A supersonic domain extends from the n1-
shock at Q, and along the contact discontinuity downstream of Q. The rarefaction fan
emanating from Q is located inside this domain. Vasilev (1999) showed analytically
that the curvature of the wavefront at Q could be infinite, as is the situation in
the present case. Inspection of figure 22(a) confirms that the n1-shock is strongly
curved near Q. The convergence of the contours downstream of the rarefaction
corresponds to a weak compression wave. Alternating rarefaction and compression
waves are seen behind this compression. Thus, a cascade of alternating rarefaction
and compression waves with decreasing intensity is formed. Near the contact dis-
continuity the flow decelerates to M = 1 for each compression, then accelerates and
turns into a rarefaction where the pressure recovers its value before the following
compression.

5. Conclusions
The jetting effect in Mach reflection has been investigated numerically and analyti-

cally. The numerical model, based on the solution of the Euler equations, revealed
that there is no unique correspondence between the kind of shock reflection (single-,
transitional-, or double-irregular-reflection) and the occurrence of jetting.

An approximate criterion for the jetting ↔ no-jetting transition was derived from
the equations of motion under the assumptions of self-similarity and radial flow
behind the n-shock. The criterion was found to be necessary but not sufficient for the
onset of the jetting effect.

The jet width, or, more precisely, the size of the vortex at the front of it, is determined
by the angle of the n-shock at the node, for transitional- and the double-irregular
systems.

At smaller ramp angles, θw�15◦, the jet flow was such that its streamlines had no
branch or stagnation points on the ramp surface. All the streamlines curled into a
vortex at the front of the jet, and the jet was then stable. A streamline branch point
did appear when the ramp angle θw was increased, but it was not associated with
any particular type of system. When θw approached the detachment value, the branch
point for the streamlines passing through the i–r sequence disappeared, and the jet
intensity was sharply reduced.
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Two types of jetting were identified, namely, strong jetting, which was defined as
jetting with a branch point in the streamlines passing through the i–r sequence, and
weak jetting, defined as jetting without such a point. Weak jetting was possible for
both small and large values of θw .

Two types of shock reflection system were found for the dual-solution-domain (only
regular reflection has been observed in experiments for this domain). They were a
system containing a three-shock-Mach-node followed by a four-shock-overtake-node
(DIR), and another system, that seemed to be intermediate between the previous one
and a three-node-shock-reflection (TIR), which was first hypothesized by Ben-Dor
& Glass (1979). These have been previously and incorrectly called a double-Mach-
reflection (DMR), and the second a transitional-double-Mach-reflection (TDMR),
respectively.

The strong jet and the contact discontinuity were unstable. The primary instability
was in the jet. The main reason for the jet instability was that the self-similar Mach
number was nearly sonic in the inlet region of the jet. The instability of the contact
discontinuity was secondary with respect to the instability of the jet.

The interaction of the n1-shock with the contact discontinuity in a double-irregular-
reflection, resulted in an alternating cascade of rarefaction and compression waves
with decreasing intensity along the contact discontinuity.

An adaptive moving grid was essential for the numerical solution of the problem.
Tracking the shock fronts and moving grids allowed us to study the flow field for long
time intervals. The time interval 0< τ < 10 in figure 19 corresponds to the increase of
the size of the perturbed flow by a factor of 210, or more than a thousand fold. The
jet was unstable for almost the entire (DIR) flow and the interaction of the n1-shock
with the contact discontinuity could be studied only by using an artificial stabilization
of the flow. Although the latter procedure could be realized on a moving grid, its
realization on the stationary grid is an open question.

This study was conducted under the auspices of the Dr Morton and Toby Mower
Chair of Shock Wave Studies.
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